ec('\\cosh\\left(͕\\right)')
Fiz-Parser-Por Alvaro H. Salas S. Mathematica :
WolframAlpha :
MathJax : ``
$$`=`
HTML SourceResult
\$\$y-y_0=m(x-x_0)\$\$$$y-y_0=m(x-x_0)$$
\$\$\cos^2θ+\sin^2θ=1\$\$$$\cos^2θ+\sin^2θ=1$$
\$\$∑↙{i=0}↖n i={n(n+1)}/2\$\$$$∑↙{i=0}↖n i={n(n+1)}/2$$
\$\${1+√5}/2=1+1/{1+1/{1+⋯}}\$\$$${1+√5}/2=1+1/{1+1/{1+⋯}}$$
\$\$f'(x)=\lim↙{h→0}{f(x+h)-f(x)}/h\$\$$$f'(x)=\lim↙{h→0}{f(x+h)-f(x)}/h$$
\\[∀x_0∀ε>0∃δ>0∋{|x-x_0|}&lt;δ⇒{|f(x)-f(x_0)|}&lt;ε\\] \[∀x_0∀ε>0∃δ>0∋{|x-x_0|}<δ⇒{|f(x)-f(x_0)|}<ε\]
\\[∫_\Δd\bo ω=∫_{∂\Δ}\bo ω\\]\[∫_\Δd\bo ω=∫_{∂\Δ}\bo ω\]
\$(\table \cos θ, - \sin θ; \sin θ, \cos θ)\$ gives a rotation by \$θ\$. $(\table \cos θ, - \sin θ; \sin θ, \cos θ)$ gives a rotation by $θ$.
\$v↖{→}⋅w↖{→} = vw\cos θ\$$v↖{→}⋅w↖{→} = vw\cos θ$
\$\{x:x^2∈\ℚ\}\$ has measure 0 in \$\ℝ\$.$\{x:x^2∈\ℚ\}$ has measure 0 in $\ℝ$.
\\(U=⋃↙αU_α⇒0→\fr F(U)→∏↙α\fr F(U_α)→↖{-}∏↙{α,β}\fr F(U_α∩U_β)\\) is exact. \(U=⋃↙αU_α⇒0→\fr F(U)→∏↙α\fr F(U_α)→↖{-}∏↙{α,β}\fr F(U_α∩U_β)\) is exact.
\\[1/7 = 0.\ov 142857\\]\[1/7 = 0.\ov 142857\]
\\[√^n{a}√^n{b} = √^n{ab}\\]\[√^n{a}√^n{b} = √^n{ab}\]
\\[\table a, =, b+c; , =, d\\]\[\table a, =, b+c; , =, d\]
\\[\text"average speed" = \text"distance traveled" / \text"elapsed time"\\] \[\text"average speed" = \text"distance traveled" / \text"elapsed time"\]
\\[y = ax^\html'&lt;input type="text" size=1>'+bx+c\\] (inside a trusted source) \[y = ax^\html'<input type="text" size=1>'+bx+c\] (inside a trusted source)
\\[\table x_0^2, {_0F_1(; a; z)}, R_i_^j_k_l\\] \[\table x_0^2, {_0F_1(; a; z)}, R_i_^j_k_l\]
\$\$[\O\H^{-}]=K_\W/[\H^{+}]\$\$$$[\O\H^{-}]=K_\W/[\H^{+}]$$
\$\$\$\$

\$\$\$\$ produces:

\$\$\$\$